Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary The plant community has a strong track record of RNA sequencing technology deployment, which combined with the recent advent of spatial platforms (e.g. 10× genomics) has resulted in an explosion of single‐cell and nuclei datasets that can be positioned in anin situcontext within tissues (e.g. a cell atlas). In the genomics era, application of proteomics technologies in the plant sciences has always trailed behind that of RNA sequencing technologies, largely due in part to upfront cost, ease‐of‐use, and access to expertise. Conversely, the use of early analytical tools for characterizing small molecules (metabolites) from plant systems predates nucleic acid sequencing and proteomics analysis, as the search for plant‐based natural products has played a significant role in improving human health throughout history. As the plant sciences field now aims to fully define cell states, cell‐specific regulatory networks, metabolic asymmetry and phenotypes, the measurement of proteins and metabolites at the single‐cell level will be paramount. As a result of these efforts, the plant community will unlock exciting opportunities to accelerate discovery and drive toward meaningful translational outcomes.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract The Plant Cell Atlas (PCA) community hosted a virtual symposium on December 9 and 10, 2021 on single cell and spatial omics technologies. The conference gathered almost 500 academic, industry, and government leaders to identify the needs and directions of the PCA community and to explore how establishing a data synthesis center would address these needs and accelerate progress. This report details the presentations and discussions focused on the possibility of a data synthesis center for a PCA and the expected impacts of such a center on advancing science and technology globally. Community discussions focused on topics such as data analysis tools and annotation standards; computational expertise and cyber‐infrastructure; modes of community organization and engagement; methods for ensuring a broad reach in the PCA community; recruitment, training, and nurturing of new talent; and the overall impact of the PCA initiative. These targeted discussions facilitated dialogue among the participants to gauge whether PCA might be a vehicle for formulating a data synthesis center. The conversations also explored how online tools can be leveraged to help broaden the reach of the PCA (i.e., online contests, virtual networking, and social media stakeholder engagement) and decrease costs of conducting research (e.g., virtual REU opportunities). Major recommendations for the future of the PCA included establishing standards, creating dashboards for easy and intuitive access to data, and engaging with a broad community of stakeholders. The discussions also identified the following as being essential to the PCA's success: identifying homologous cell‐type markers and their biocuration, publishing datasets and computational pipelines, utilizing online tools for communication (such as Slack), and user‐friendly data visualization and data sharing. In conclusion, the development of a data synthesis center will help the PCA community achieve these goals by providing a centralized repository for existing and new data, a platform for sharing tools, and new analytical approaches through collaborative, multidisciplinary efforts. A data synthesis center will help the PCA reach milestones, such as community‐supported data evaluation metrics, accelerating plant research necessary for human and environmental health.more » « less
-
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.more » « less
An official website of the United States government
